

DAILY PRACTICE PROBLEMS

DPP No. 52

Total Marks : 27

Max. Time : 28 min.

Topics : Circle, Straight Lines

Type of Questions			
Single choice Objective (no negative marking) Q.1,2,3,4	(3 marks, 3 min.)	[12,	12]
Assertion and Reason (no negative marking) Q.5	(3 marks, 3 min.)	[3,	3]
Subjective Questions (no negative marking) Q.6	(4 marks, 5 min.)	[4,	5]
Match the Following (no negative marking) Q.7	(8 marks, 8 min.)	[8,	8]

1. The equation of the image of the circle $x^2 + y^2 + 16x - 24y + 183 = 0$ in the line mirror 4x + 7y + 13 = 0 is: (A) $x^2 + y^2 + 32x - 4y + 235 = 0$ (B) $x^2 + y^2 + 32x + 4y - 235 = 0$ (C) $x^2 + y^2 + 32x - 4y - 235 = 0$ (D) $x^2 + y^2 + 32x + 4y + 235 = 0$

2. Find the maximum and minimum distance of the point (2, -7) from the circle $x^2 + y^2 - 14x - 10y - 151 = 0$. (A) {28, 2} (B) {2, 28} (C) {2, 13} (D) {15, 13}

- **3.** The line 2x + 3y = 12 meets the x axis at A and the y axis at B. The line through (5, 5) perpendicular to AB meets the x axis, y axis & the line AB at C, D, E respectively. If O is the origin, then the area of the region OCEB is :
 - (A) $\frac{20}{3}$ sq. units (B) $\frac{23}{3}$ sq. units (C) $\frac{26}{3}$ sq. units (D) $\frac{5\sqrt{52}}{9}$ sq. units

4. The algebraic sum of perpendicular distances from A (x_1, y_1) , B (x_2, y_2) and C (x_3, y_3) to a variable line is zero, then all the such lines will always pass through (A) the orthocentre of $\triangle ABC$ (B) the centroid of $\triangle ABC$

v		(\mathbf{D})) the centrold of ΔAD
()	C) the circumcentre of ∆ABC	(D) the incentre of ∆AB

5. Statement-1: Perpendicular from origin O to the line joining the points A ($c \cos \alpha$, $c \sin \alpha$) and B ($c \cos \beta$, $c \sin \beta$) divides it in the ratio 1 : 1

Statement-2: Perpendicular from opposite vertex to the base of an isosceles triangle bisects it.

(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.

(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1

(C) Statement-1 is True, Statement-2 is False

(D) Statement-1 is False, Statement-2 is True

6. The sides of a rhombus are parallel to y = 2x + 3 and 2y = x + 5. The diagonals of the rhombus intersect at (1, 2). If one vertex of the rhombus lies on the y-axis and possible values of the ordinates of this vertex are a & b, then find the value of (a + b).

7. Match the column

Match reflection of line x + y + 1 = 0, respect to the line given in the column-I, with lines in column-II.

Column - IColumn - II(A) 2x + y + 1 = 0(p) x + 7y - 11 = 0(B) x - 2y + 1 = 0(q) 7x + y + 1 = 0(C) x + 2y - 1 = 0(r) 7x + y - 11 = 0(D) 2x + y - 1 = 0(s) 7x + y + 7 = 0

Answers Key

- **1.** (D)
- **2.** (A)
- **3.** (B)
- **4.** (B)
- **5.** (A)
- **6.** 4
- 7. (A) \rightarrow q, (B) \rightarrow (s), (C) \rightarrow p, (D) \rightarrow r

Get More Learning Materials Here : 📕

